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Summary. An incremental Delaunay triangulation algorithm to generate Voronoi
diagrams within the L∞ norm is presented. The main qualities are the preserva-
tion of the simplicity of the classical L2 version and its its intrinsic robustness It is
then coupled to the well known Lloyd algorithm for computing Centroidal Voronoi
Tesselations of point sets. This algorithm is then used to generate well shaped quadri-
lateral meshes.

1 Introduction

The Voronoi diagram of a set of vertices in the euclidian 2D space is one of
the most studied topic of the computational geometry field. Nethertheless,
if its L2 metric version is well known, its extension in different Lp metrics
is less known. As a consequence, the resulting applications have not been
extensively explored, due to the lack of a practical algorithm to build such
Voronoi diagrams.

In this research note we will first describe a version of the Bowyer-Watson
algorithm used to compute the Delaunay triangulation and its associated
Voronoi diagram of a set of points in the L∞ metrics. We will show that
these diagrams can be used to compute the Centroidal Voronoi Tesselation
(CVT) of a set of point in the L∞ metrics. We will use the nice properties of
these diagrams to generate and optimize a quadrilateral mesh.

1.1 Construction to the L∞ Voronoi Diagram

The Lp norm of a vector x, noted ‖x‖p, is a function that assigns a positive
length to all vectors in a vector space Ed:

‖x‖p = (

n∑
i=1

|xi|p)
1
p (1)
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It can be shown that for p→ ∞, ‖x‖∞ = max(|xi|).
The Voronoi diagramm in the L∞ metric has already been studied by [3],

[6] and [1]. At least the two implementations are plane sweeping algorithms.
We propose here an incremental version.

The L∞ bisector of two generator points is composed of 3 line segments
(see Fig. 1). Because the Voronoi cell of a generator point in the L∞ norm
is starshaped and considering the convex shape of the L∞ norm, the classical
algorithms for Delaunay triangulation can be used under minimal changes.

(a) Regular cases (b) Singular cases

Fig. 1. Bissector of 2 generator points.

Delaunay Triangulation

The predicate used when constructing a Delaunay triangulation in the L2

norm is the incircle test. In the L∞ norm the predicate has obviously to be
changed. In 2D, it occurs that, geometrically, the levelset of the L∞ distance
to a point is a square. The L2 incircle test thus becomes an insquare test in
the L∞ norm. In practice, the test consists in finding the smallest square that
encompasses the 3 points of a triangle (see Fig. 2(a)).

It is worth noting that the center of the circumsquare is not always
uniquely defined, as two degenerated cases can be encountered. Every point
of the thick dotted line (a) is equidistant to all 3 vertices of the triangles.

1. Figure 2(b): The insquare test thus becomes a inrectangle test in this case.
2. Figure 2(c): The square whose size is minimal is chosen for the insquare

test.

Voronoi Diagram

Using the Delaunay triangulation, the Voronoi diagram is built by joining the
center of the circumsquares of the simplices of the triangulation. Nevertheless,
recall that in the L∞ norm, the bisector of 2 generator points is a broken
line composed of at most 3 segments. Thus, it is necessary to compute the
intersection of the bisector and the Voronoi vertices (see Fig. 3).
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(a) Square encompassing a
triangle.

(a)

(b) Rectangle encompass-
ing a triangle.

(a
)

(c) Infinite set of encom-
passing squares

Fig. 2. Singular cases for the insquare test.

(a)

Fig. 3. Bounded bissector of a Voronoi diagram.

2 Application to Quad optimization

A centroidal Voronoi tessellation (CVT) is a special Voronoi tessellation of
a given point set such that the generating points are the centroids of their
corresponding Voronoi regions with respect to a prescribed density function.

The most used method for computing a CVT is the well known Lloyd
algorithm [5]. It consists in generating a new points set from a previous one
until certain stopping criterion is met.

The aim of building a Voronoi diagram generator in the L∞ norm was to
find a way to optimize a quadrilateral mesh. Indeed, it has been shown that a
CVT in the case of the L∞ norm leads to aligned generator points along the
frame axis. An important step in the Lloyd algorithm is to compute accurately
the centroid of each Voronoi cell. Unlike [4] which compute the CVT energy
in the L∞ norm from a Voronoi cell of a L2 Voronoi diagram, we have here
the opportunity to use an explicit Voronoi diagram in the L∞ norm, for which
we can compute easily the centroid of each cell :

zi =

∫
Ωi

yρ(y)dy∫
Ωi

ρ(y)dy
(2)

Since the Voronoi cells are star shaped as seen from the generator point, they
can be decomposed into non overlapping triangular sub-domains for which
centroids are easily computed.
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3 Example

This test case is obtained in a unit square domain with a prescribed mesh size
field which have a value of h(x, y) = 0.01 along the crosslines and grow linearly
away from the crosslines. The initial set of points is randomly generated inside
the domain (see Fig. 4(a)).

(a) Initial Voronoi
diagram of a random
point distribution

(b) Final Voronoi di-
agram after 500 iter-
ations

(c) Resulting quad
mesh generated from
the above Voronoi
diagram

Fig. 4. Example of the Lloyd algorithm applied on a random point set.

The resulting CVT of the initial set of points is presented in Fig. 4(b). The
recombination of the Delaunay triangulation then results in a good quality
grading quad mesh (see Fig. 4(c)).

4 Conclusion

In this work, an algorithm to generate a quality quad element mesh using the
Lloyd iteration algorithm coupled to an analytical Voronoi diagram in the L∞
norm has been presented.

Nevertheless, to make this method appealing in FEM computations, it
should be able to take directional information into account. It is usually ex-
pected for quadrilateral elements to be oriented relatively to the boundaries
of the domain. The integration of this feature involves to generalize the al-
gorithm in order to build Voronoi diagrams in the L∞ norm with a specified
orientation at each point. Using a discrete definition of anisotropic Voronoi
diagrams inspired by [2], Fig. 5 already shows that the Voronoi cells tend to
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be aligned along the direction field. But in such cases, the complexity is much
higher. For three given points and their corresponding directions, there can be
more than one equidistant vertex. The resulting Voronoi diagram may thus
contain not connected pieces of cells, and the connectivity graphs may not be
planar. In order to efficiently address these problems, a currently developped
idea is to build an approximated Voronoi diagram.

(a) Initial Voronoi diagram (b) Voronoi diagram after
Lloyd iterations

Fig. 5. Voronoi diagram under an orientation field (crossfield)
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